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Abstract. A braid in math is not too far from how it sounds � a collection of strands

interlacing and intertwining as they travel through paths in space. These braids are

interesting creatures. Some braids look complex, but are just one twist from being

untied; other braids can look simple, but are in truth much more obstinate. However,

the study takes an unexpected turn upon discovering braids, like numbers, can be

multiplied and divided to create new braids: they form an abstract structure called a

group. By studying this group, we will realize that by studying braids, we are actually

also studying the symmetries of a disk.

1. Preliminaries and Notation

In this paper, we will assume a working knowledge of basic set theory and the func-
tions between them. The bare minimum assumptions on sets and functions are listed
further below. Additionally, we will assume continuity of multivariable functions � an
understanding on the level of a �rst multivariate calculus course should be enough to fol-
low intuitively. Finally, we assume elementary knowledge of matrices and determinants,
though this is purely contained in examples and informal discussions � it is not strictly
necessary to understand the core content.

This is technically all the required prerequisites, but the reader without any previous
exposure to group theory may �nd this paper unfairly demanding. Nonetheless, Section 2
gives a primer on all the group theory required from the beginning. We hope it is enough
to �ll in any gaps in knowledge.

Throughout this paper, many of the de�nitions and proofs will come with informal
discussions alongside the full technical details. It is not necessary to fully understand
every technical detail, only to glean some intuition. The formal proofs are generally not
essential for the story, so feel free to skip them. The subject of this paper is very visual,
and the core ideas can nearly always be grasped by intuition alone.

Readers are encouraged to skip any sections they are already familiar with.

Key words and phrases. Mapping Class Groups, Geometric Group Theory, Group Theory, Algebraic

Topology, Homotopy, Introduction.

This was largely inspired by an REU project under Beth Branman and Mark Pengitore at UVa,

organized by Thomas Koberda.
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Notation.

∅ The empty set
s ∈ S s is an element of the set S
A ⊂ B A is a subset of B, or a ∈ A implies a ∈ B
A ∪B The union of A and B {s : s ∈ A or s ∈ B}
A ∩B The intersection of A and B {s : s ∈ A and s ∈ B}
A \B The set di�erence of A and B {s : s ∈ A and s /∈ B}
A×B The cartesian product {(a, b) : a ∈ A and b ∈ B}
Sn The cartesian product {(s1, s2, . . . , sn) : sj ∈ S}

f : A → B A function from the set A to the set B
a 7→ b (of a function) maps the element a to the element b

id : A → A The identity function that takes each point of A to itself.

Sets.

Z The set of integers {. . . ,−2,−1, 0, 1, 2, . . .}
R The set of real numbers
Dn The n-dimensional unit disk

{
(x1, . . . , xn) ∈ Rn :

∑n
i=1 x

2
j ≤ 1

}
Sn The n-dimensional unit sphere

{
(x1, . . . , xn+1) ⊂ Rn+1 :

∑n+1
i=1 x2

i = 1)
}
.

De�nition 1.1 (Properties of functions). A function f : A → B between sets is injective
if for all a, a′ ∈ A such that a ̸= a′, f(a) ̸= f(a′).

Likewise, f is surjective if for all b ∈ B, there exists a ∈ A such that f(a) = b. If f is
both injective and surjective, we say f is bijective.

If there exists g : B → A such that for all a ∈ A and b ∈ B,

(f ◦ g)(b) = b and (g ◦ f)(a) = a,

we say f is invertible.

Theorem 1.2. Let f : A → B be a function between sets. Then f is bijective if and only
if f is invertible.

2. Introduction to Groups

De�nition 2.1 (Groups, [DF04, p. 16]).

Informal. We can think of groups as a way to generalize adding and multiplying to more
abstract settings. For example, in the familiar situation of adding integers together, we
can think of addition as a function whose input is an ordered pair (a, b) and whose output
is another integer we call a+ b. We call this a binary operation, and the operation + has
the following nice properties in the integers:

(i) for all a, b, c ∈ Z, (a+ b) + c = a+ (b+ c),
(ii) for all a ∈ Z, a+ 0 = a = 0 + a,
(iii) for all a ∈ Z, a+ (−a) = 0 = (−a) + a,
(iv) for all a, b ∈ Z, a+ b = b+ a.

A group generalizes this idea to more abstract sets than the integers and more abstract
operations than addition. For instance, we will see in Example 2.9 later that the symme-
tries of a triangle satisfy properties (i), (ii), and (iii). Further in the paper, we will see
Mapping Class groups (Def. 5.6) and Braid groups (Def. 4.8). Any set with an operation
that satis�es (i), (ii), and (iii), we call a group under that operation. If we further have
property (iv), that group is called abelian.
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Formal. A group is a pair (G, ∗) where G is a set and ∗ is a binary operation

∗ : G×G → G,

where we denote ∗(g1, g2) = g1 ∗ g2, satisfying the group axioms:

(i) Associativity. For all g1, g2, g3 ∈ G, (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3).
(ii) Identity. There exists e ∈ G such for all g ∈ G, e ∗ g = g = g ∗ e. We call e an

identity element of G, or simply an identity.
(iii) Inverses. For all g ∈ G, there exists h ∈ G such that h ∗ g = e = g ∗ h. We call h

an inverse of g.

A group that further satis�es

(iv) Commutativity. For all g, h ∈ G, g ∗ h = h ∗ g
is called abelian.

Proposition 2.2 ([DF04, p. 18]). If (G, ∗) is a group, then

(i) The identity of G is unique,
(ii) For each g ∈ G, the inverse of g is uniquely determined.

By Proposition 2.2, we can unambiguously denote the identity of a group (G, ∗) by 1
and the inverse of an element g ∈ G by g−1. Then for any n ∈ Z and g ∈ G, we de�ne

gn =


gn = 1 if n = 0,

g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n times

if n > 0,

(g−1)−n if n < 0.

If (G, ∗) is abelian, we often choose the symbols 0, −g and ng in place of 1, g−1, and gn.
Moving forward, we will refer to a group (G, ∗) simply as G if the operation is clear.

Example 2.3. As discussed in the informal section of De�nition 2.1, the integers under
addition form an abelian group. That is, (Z,+) is an abelian group.

Example 2.4. Any set G with just one element, G = {e}, is a group by the binary
operation e ∗ e = e. Indeed, this operation is associative, e is the identity, and e is its own
inverse. This group is abelian as well.

We call this the trivial group.

Example 2.5. The integers under multiplication do not form a group because no elements
besides 0, −1, and 1 have multiplicative inverses. That is, (Z, ·) is not a group.

Example 2.6. The real numbers under addition, (R,+), forms a group for similar reasons
to (Z,+). However, the real numbers under multiplication, (R, ·), does not form a group
because 0 does not have a multiplicative inverse. However, if we de�ne

R× = R \ {0},
then (R×, ·) forms an abelian group.

Example 2.7. The integers under subtraction, (Z,−), is not a group. Although − admits
an identity and inverses, − is not associative. For example,

(1− 2)− (−3) = 2

while
1− (2− (−3)) = −4.
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Example 2.8. Fix a positive integer n. The space M(n,R) of n × n matrices is not a
group under multiplication. Although the multiplication is associative and the diagonal
matrix of 1's is an identity, not every matrix admits an inverse. For example,[

2 6
1 3

]
∈ M(2,R)

has determinant 0, thus is not invertible.
If we restrict to the invertible matrices, GL(n,R) ⊂ M(n,R), then GL(n,R) is a group

under multiplication. Note (GL(n,R), ·) is not abelian. For example,[
1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
,

but [
1 0
1 1

] [
1 1
0 1

]
=

[
1 1
1 2

]
.

Example 2.9 (Dihedral group). Our �rst unfamiliar example: the symmetries of a trian-
gle, D3, form a group under composition ◦.

By symmetries of a triangle, we mean this. Given an equilateral triangle, counterclock-
wise rotations by 0, 2π/3, and 4π/3 about the center result in the same triangle with the
vertices in di�erent positions. We call these rotations e, R, and R2 respectively. In Figure
1, these rotations correspond to (a), (b), and (c).

Another three symmetries are given by re�ections across the three altitudes of the
triangle. We call these re�ections F1, F2, and F3, pictured in (d), (e), and (f) of Figure 1.
These symmetries comprise the elements of D3, making six in total.

The operation is composition � that is, if A,B ∈ D3, then A ◦ B means apply B to
the triangle, then apply A to the resulting triangle (see Examples in Figure 2). Note that
R2 is simply R ◦ R, justifying the notation. We can work out by force that for any two
elements A,B ∈ D3, A ◦B ∈ D3, so ◦ is a well-de�ned binary operation D3 ×D3 → D3.

In fact, ◦ is associative, e is the identity, and every element has an inverse (R−1 = R2,
the remaining elements are their own inverses). It follows that (D3, ◦) is a group. Note
that D3 is not abelian by the Example in Figure 2.

In general, the symmetries of an n-gon is denoted Dn, and (Dn, ◦) is a group with 2n
elements. This is known as the Dihedral group.

Example 2.10 (Symmetric group). Let n ∈ Z be positive. A permutation on the set
S = {1, 2, . . . , n} is a bijection S → S. We denote by Sn the set of all permutations of S.
Note that the identity map 1 ∈ Sn that sends every element to itself is an identity under
composition. That is, for every σ ∈ Sn,

σ ◦ 1 = 1 ◦ σ = σ.

Moreover, bijections are invertible, so σ ∈ Sn implies there exists σ−1 ∈ Sn. Finally,
function composition is associative, so (Sn, ◦) is a group. We call this the symmetric
group on n indices.

De�nition 2.11.

Informal. Note that the Dihedral group D3 of Example 2.9 is kind of similar to the
symmtric group S3 of Example 2.10. For example, note that the rotation R by 2π/3 of
Figure 1(b) maps the indices like

1 7→ 3, 2 7→ 1, 3 7→ 2.
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(a) Rotation by 0. (b) Rotation counterclockwise by 2π/3

(c) Rotation counterclockwise by 4π/3.
(d) Re�ection over altitude from bottom left ver-

tex.

(e) Re�ection over altitude from bottom right

vertex. (f) Re�ection over altitude from top vertex.

Figure 1. Symmetries of the triangle.

(a) The composition F3 ◦R. Note this is the same as F1.

(b) The composition R ◦ F3. Note this is the same as F2.

Figure 2. Examples of compositions in D3. Observe F3 ◦R ̸= R ◦ F3.
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But this is a permutation of {1, 2, 3}, we can de�ne a function D3 → S3 that sends R to
the permutation above and the other symmetries to their corresonding permutations. This
hints at some deep similarity between D3 and S3 � in fact, we say they are isomorphic,
denoted D3

∼= S3.
There are also weaker relationships between groups. For example, it is true that for

any A,B ∈ GL(n,R) (see Example 2.8),

det(AB) = det(A) det(B).

That is, the determinant turns multiplication in GL(n,R) into multiplication in R× (see
Example 2.6). So somehow, the determinant is telling us the multiplications on GL(n,R)
and R× induce somewhat similar group structures. We say that det is a homomorphism.
An isomorphism is a homomorphism that is really nice � one that is invertible.

Formal. Let (G, ∗), (G′, ⋆) be groups. A group homomorphism from G to G′ is a map

φ : G → G′

such that for all a, b ∈ G,

φ(a ∗ b) = φ(a) ⋆ φ(b).

A group homomorphism φ : G → G′ is a group isomorphism if φ is invertible. Then
we denote G ∼= G′.

Example 2.12. Given any group (G, ∗), the identity map id : G → G, de�ned by

id(g) = g

for all g ∈ G, is a group homomorphism. To see this, observe that for any a, b ∈ G,

id(a ∗ b) = a ∗ b = id(a) ∗ id(b).

In fact, id is also its own inverse, thus an isomorphism.
A concrete example of this is the familiar function f : R → R de�ned by f(x) = x.

Example 2.13. Given any groups (G, ∗), (G′, ⋆), where we denote the identity of G′ by
1
′, the function φ : G → G′ de�ned by

φ(g) = 1
′

for all g ∈ G is a group homomorphism.

Example 2.14. As we discussed in De�nition 2.11, the determinant

det : GL(n,R) → R×

is a group homomorphism. In fact, one can show det is a surjective but not injective
homomorphism.

Example 2.15. The function φ : Z → Z that maps

φ(a) = 2a

for all a ∈ Z is a group homomorphism. To see this, observe that for any a, b ∈ Z,

φ(a+ b) = 2(a+ b) = 2a+ 2b = φ(a) + φ(b).

Additionally, if a ̸= b, then 2a ̸= 2b, so φ is injective. However, φ is not surjective as it
does not reach any odd numbers. Note though, that φ is bijective as a function from Z to
2Z. We will see another example of this occuring below.
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Example 2.16. A very interesting example is the exponential map exp : R 7→ R× given
by

exp(x) = ex

for all x ∈ R. Note that this is a homomorphism from (R,+) to (R×, ·) because for all
x, y ∈ R,

exp(x+ y) = ex+y = exey = exp(x) · exp(y).
Note that ex is an invertible function from R to the positive real numbers R+ (since the
inverse is log(x)), so exp is injective, but only surjective on R+. Ultimately, exp is not
surjective on all of R.

This leads in to our next topic.

De�nition 2.17 (Subgroups [DF04, p. 22]).

Informal. The homomorphisms examined in Examples 2.15 and 2.16 were almost isomor-
phisms. For φ in Example 2.15, φ was bijective as a function Z → 2Z. For exp in 2.16,
exp was bijective as a function R → R+. In fact, we can show (2Z,+) and (R+,×) are
groups in their own right, so φ and exp give isomorphisms Z ∼= 2Z and (R,+) ∼= (R+, ·)
respectively. They give isomorphisms to groups that lie inside other groups.

This sort of situation happens quite frequently: within a group are often other groups,
which are in fact groups by the same operation. If a group G contains a group H, we call
H a subgroup of G.

Formal. Let (G, ∗) be a group, and let H be a nonempty subset of G. If we have the
properties:

(i) Closure under inverses. For all h ∈ H, h−1 ∈ H.
(ii) Closure under ∗. For all h, k ∈ H, h ∗ k ∈ H,

then we say (H, ∗) is a subgroup of G. We often denote this by H ≤ G.
Note these conditions tell us (H, ∗) is a group in its own right, independent of G.

Example 2.18. Let G be any group. Then {1}, G ≤ G are easy examples of subgroups.

Example 2.19. As noted in De�nition 2.17, 2Z ≤ Z and R+ ≤ R×.

Example 2.20. The negative real numbers R− not a subgroup of R× because −1 ∈ R−,
but (−1)(−1) = 1 is not in R×. Therefore, R− is not closed under multiplication.

Example 2.21. Recall the de�nition of GL(n,R) from Example 2.8. Let

SL(n,R) = {A ∈ GL(n,R) : det(A) = 1}.
This is a subgroup by some properties of matrices:

(i) for any A ∈ SL(n,R), det
(
A−1

)
= 1 implies A−1 ∈ SL(n,R),

(ii) for any A,B ∈ SL(n,R), det(AB) = 1 implies AB ∈ SL(n,R).

Example 2.22. From Example 2.9, note that {e,R1, R2} ≤ D3. Indeed, the inverses of
rotations are all rotations, and the compositions of rotations are rotations as well.

We also have {e, Fi} ≤ D3 for all i = 1, 2, 3. This is because Fi is always its own inverse.

From the discussion in De�nition 2.17, we have managed to recover isomorphisms from
the homomorphisms in Examples 2.15 and 2.16 by considering subgroups. But can we
do the same for a homomorphism like det in Example 2.14, which is surjective but not
injective? We would like to �shrink� the domain in such a way that no two elements take
on the same value, while still maintaining a group structure. To do something like this,
we will need to take a detour to set theory.
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De�nition 2.23 (Partitions [DF04, p. 3]).

Informal. If we're working with some set A, it's often useful to separate the elements of
A into smaller subsets, maybe based on some property. For example, Z can be divided up
into the subsets

3Z = {. . . ,−6,−3, 0, 3, 6, . . .},
3Z+ 1 = {. . . ,−5,−2, 1, 4, 7, . . .},
3Z+ 2 = {. . . ,−4,−1, 2, 5, 8, . . .}.

These subsets divide up Z really nicely in the sense that none of their elements overlap
and their union is all of Z. When we divide up a set A into subsets whose intersections
with each other are empty and union is the whole set, we get a partition of A.

Formal. A partition of a nonempty set A is a collection {Ai : i ∈ I} of nonempty subsets
of A (here, I is an indexing set that helps us keep track of the sets in the collection.
Common ones are the positive integers Z+ and R) such that

A =
⋃
i∈I

Ai

is the union of all the Ai and
Ai ∩Aj = ∅

for all i, j ∈ I such that i ̸= j.

Example 2.24. Let A be a nonempty set. The partition consisting of just the subset
A ⊂ A is technically a partition of A.

Example 2.25. Let A be a nonempty set. The partition consisting of the one-element
set {a} ⊂ A for all a ∈ A is a partition on A.

Example 2.26. From the discussion in De�nition 2.23, Z is partitioned by the subsets
3Z, 3Z+ 1, and 3Z+ 2.

These partitions are intimately related to the next idea.

De�nition 2.27 (Equivalence relations [DF04, p. 3]).

Informal. Seemingly a departure from what we've been talking about, we would now like
to generalize the idea of equality. Note that equality, =, has the following properties in a
set A:

(i) for all a ∈ A, a = a,
(ii) for all a, b ∈ A, a = b implies b = a,
(iii) for all a, b, c ∈ A, a = b and b = c implies a = c.

We call any relationship of elements in a set satisfying the same types of properties is an
equivalence relation.

Formal. A relation on a nonempty set A is a subset R of A× A, and we write a ∼ b if
and only if (a, b) ∈ R. An equivalence relation on A is a relation on A satisfying:

(i) Re�exivity. For all a ∈ A, a ∼ a.
(ii) Symmetry. For all a, b ∈ A, a ∼ b implies b ∼ a.
(iii) Transitivity. For all a, b, c ∈ A, a ∼ b and b ∼ c implies a ∼ c.

Example 2.28. An easy equivalence relation on a nonempty set A is the entire set R =
A×A. This amounts to saying that for all a, b ∈ A, a ∼ b.
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Example 2.29. The familiar = relation is given by the subset

R = {(a, a) ∈ A×A : a ∈ A}.
That is, every element is related only to itself.

Example 2.30. ∼= is an equivalence relation on any set of groups. If G is any group,
then id : G → G (see Example 2.12) is an isomorphism, so G ∼= G. Symmetry comes
from the fact inverses of bijective group homomorphisms are themselves group homomor-
phisms. Transitivity comes from the fact compositions of homomorphisms are still group
homomorphisms. We will omit the proofs of these.

Example 2.31. ≤ is not an equivalence relation on Z. Although ≤ is re�exive and
transitive, ≤ fails symmetry. For example, 4 ≤ 5, but 5 ̸≤ 4.

Example 2.32. De�ne a relation on Z via a ∼ b if and only if a has the same remainder
as b when divided by 3. This is an equivalence relation:

(i) For all a ∈ Z, a has the same remainder mod 3 as itself.
(ii) For all a, b ∈ Z, if a has the same remainder as b mod 3, then b has the same

remainder as a mod 3.
(iii) For all a, b, c ∈ Z, a ∼ b and b ∼ c means a has the same remainder as b when

divided by 3, but c also has the same remainder as b when divided by 3. Thus, a
must have the same remainder as c when divided by 3, hence a ∼ c.

De�nition 2.33 ([DF04, p. 3]).

Informal. Given an equivalence relation ∼ on a set A and an element a ∈ A, we can
think about the subset of elements that relate to A. This is called the equivalence class of
a with respect to ∼. We denote this by [a]∼.

Formal. Let A be a nonempty set, ∼ an equivalence relation on A. Then for all a ∈ A,
the equivalence class of a with respect to ∼ is de�ned as

[a]∼ = {b ∈ A : a ∼ b}.

Example 2.34. In Example 2.28, the equivalence class of any element is the whole set.
That is, for all a ∈ A,

[a]∼ = A.

Note this gives the sets for the partition for 2.24.

Example 2.35. In Example 2.29, the equivalence class of any element is the set containing
just itself. That is, for all a ∈ A,

[a]∼ = {a}.
Note this gives the sets in the partition for Example 2.25.

Example 2.36. In Example 2.32, the equivalence class of any element is one of 3Z, 1+3Z,
and 2+ 3Z depending on if the remainder of that element mod 3 is 0, 1, or 2 respectively.
Note that the equivalence classes give precisely the subsets for the partition in 2.26.

In Examples 2.34, 2.35, and 2.36, we see that equivalence relations induce partitions via
equivalence classes. Interestingly, this pattern always holds, and in fact goes both ways.

Theorem 2.37 ([DF04, p. 3]). Let A be a nonempty set.

(i) If ∼ is an equivalence relation on A, then the set of equivalence classes ∼ forms a
partition of A.
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(ii) Conversely, if {Ai : i ∈ I} is a partition of A, then there is an equivalence relation
on A whose equivalence classes give that partition.

Proof. (i): Let A be a nonempty set, and suppose ∼ is an equivalence relation on A. Then
we will show set of equivalence classes of A with respect to ∼ form a partition of A.

(a) First,

A =
⋃
a∈A

[a]∼

because for all a ∈ A, a ∈ [a]∼.
(b) Second, if [a]∼ = [b]∼ for some a, b ∈ A, then a ∈ [a]∼ implies a ∈ [b]∼. But this

means a ∼ b. We can then show this means [a]∼ and [b]∼ are actually the same
set. Therefore, equivalence classes that are di�erent from each other must have
empty intersection, lest they actually be equal.

(ii): Let A be a nonempty set, and suppose {Ai : i ∈ I} is a partition of A. Then de�ne
the relation ∼ on A where for all a, b ∈ A, a ∼ b if and only if a, b ∈ Ai for some i ∈ I.
We will show this is an equivalence relation.

(a) For all a ∈ A, by the de�nition of a partition of A, a ∈ Ai for some i ∈ I, so a ∼ a.
(b) For all a, b ∈ A, a, b ∈ Ai implies b, a ∈ Ai pretty self-evidently. Thus, a ∼ b

implies b ∼ a.
(c) For all a, b, c ∈ A, a, b ∈ Ai and b, c ∈ Aj for some i, j ∈ I implies b ∈ Ai ∩ Aj .

Thus, Ai ∩Aj ̸= ∅, which means i = j, so a ∼ c.

Now we will show the equivalences classes of ∼ give the desired partition. Given any i ∈ I,
we have

Ai = [a]∼

for any a ∈ Ai by de�nition of ∼. Likewise, for any a ∈ A, a ∈ Ai for some i ∈ I, so

[a]∼ = Ai.

We conclude the equivalence classes of ∼ give the desired partition {Ai : i ∈ I}. □

So partitions and equivalence relations are really equivalent ideas. We will now circle
back to groups. The strategy will be to �shrink down� a group by partitioning that group,
then turning the set of subsets in that partition into a new group. First, we will need the
following more technical de�nitions.

De�nition 2.38 (Normal subgroup [DF04, p. 82]). Let G be a group, N ≤ G a subgroup
of G. We call N a normal subgroup of G if for all n ∈ N, g ∈ G, gng−1 ∈ N . We denote
this N ⊴ G.

Example 2.39. 3Z ≤ Z is a normal subgroup because given any a ∈ 3Z, b ∈ Z,

b+ a+ (−b) = a ∈ 3Z.

In fact, the same method shows that subgroups of abelian groups are normal.

Example 2.40. Recall the subgroup {e, F1} ≤ D3 in Example 2.22. This is not a normal
subgroup because

R2 ◦ F1 ◦R1 = F3 /∈ {e, F1}.
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Example 2.41. Recall from Example 2.21 that SL(n,R) is a subgroup of GL(n,R). In
fact, SL(n,R) is a normal subgroup of GL(n,R). To see this, let A ∈ SL(n,R), B ∈
GLn(R) be arbitrary. Then

det
(
BAB−1

)
= det(B) det(A) det(B)

−1
= det(A) = 1,

so A ∈ SL(n,R). The subset
SL(n,R) = {A ∈ GL(n,R) : det(A) = 1}

is a normal subgroup.

De�nition 2.42 (Cosets [DF04, p. 77]). Let (G, ∗) be a group, H ≤ G a subgroup of G.
For any g ∈ G, de�ne the set

gH = {g ∗ h ∈ G : h ∈ H}.
We call these left cosets of H in G. Any element of a coset is a called a representative
for the coset.

If (G,+) is abelian, we often write g +H in place of gH.

Example 2.43. Let G be a group. Recall that {1}, G ≤ G are subgroups. In fact,
{1}, G ⊴ G are normal subgroups as well.

Example 2.44. The sets 3Z, 1 + 3Z, and 2 + 3Z de�ned in De�nition 2.23 are cosets of
the subgroup 3Z ≤ Z. Numbers like 1,−2, 10 are all representatives of 1 + 3Z. Note the
name representative makes sense, since

1 + 3Z = −2 + 3Z = 10 + 3Z.

Example 2.45. The cosets of SL(n,R) (see Example 2.21) are precisely the sets of el-
ements with the same determinant. That is, suppose A ∈ GL(n,R) has determinant u
for some u ∈ R. Then every element of A(SL(n,R)) has determinant u. Conversely, if
another matrix B ∈ GL(n) has determinant n, then

B = A(A−1B)

where det
(
A−1B

)
= 1 implies B ∈ A(SL(n,R)). Therefore, we can say det is injective on

the cosets of SL(n,R). Then to salvage an isomorphism out of det, we need only create a
new group whose elements are the cosets of SL(n,R). We will show how to do this.

Proposition 2.46. Let G be a group, H ≤ G any subgroup. Then the cosets of H in G
partition G.

Proof. Let ∼ be the equivalence relation on G de�ned by a ∼ b if and only if a and b are
in the same coset of H for all a, b ∈ G. This is an equivalence relation because

(i) for any a ∈ G, a ∈ aH, so a ∼ a,
(ii) for any a, b ∈ G, a, b ∈ gH implies b, a ∈ gH, so b, a ∈ G.
(iii) for any a, b, c ∈ G, a, b ∈ gH and b, c ∈ g′H implies there exist h, h′

1, h
′
2 ∈ H such

that
b = gh, b = g′h′

1, c = g′h′
2.

We deduce using inverses that

g′ = bh′−1
1 = ghh′

1,

so
c = ghh′

1h
′
2 ∈ gH.

Thus, a ∼ c.
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Since ∼ is an equivalence relation, the equivalence classes of ∼ partition G. Note these
equivalence classes are precisely the cosets of H. □

Proposition 2.47. Let G be a group, N ⊴ G a normal subgroup. Then for any two cosets
aN, bN , the coset abN is independent of the choice of representatives. That is, given any
other representatives a′, b′ of aN and bN respectively, a′b′N = abN .

Proof. Let g ∈ abN . Then we can write g = abn for some n ∈ N . If a′ ∈ aN , b′ ∈ bN ,
then we can also write a′ = an1, b

′ = bn2 for n1, n2 ∈ N . Then

g = abn = (a′n−1
1 )(b′n−1

2 )n = a′(b′b′−1)n−1
1 b′n−1

2 n = a′b′(b′−1n−1
1 b′)n−1

2 n ∈ a′b′N

because b′−1n1b
′ ∈ N by N being normal. By the same argument the other direction,

abN = a′b′N . □

De�nition 2.48 (Quotient groups).

Informal. By putting a partition {Ai : i ∈ I} on a group G, we can form a new group
G whose elements are the subsets Ai themselves. A concrete example is helpful. Recall
the partition of 2.36 on Z by the cosets 3Z, 1 + 3Z, and 2 + 3Z. The elements of our new
group, which we denote Z/3Z, are as follows:

Z/3Z = {3Z, 1 + 3Z, 2 + 3Z}.
We emphasize that the sets themselves have become elements. Z/3Z is a group in the
following way. If we de�ne the sum of cosets of 3Z by

(a+ 3Z) + (b+ 3Z) = (a+ b) + 3Z,
then

3Z+ 3Z = 3Z, 3Z+ (1 + 3Z) = 1 + 3Z, (1 + 3Z) + (2 + 3Z) = 3Z, etc.

Note the �niceness� here. The sums of the sets in Z/3Z always give another element in
Z/3Z. Moreover, the result stays the same regardless of which representative we choose
for each coset. All in all, we get a group structure on Z/3Z, which we call a the quotient
group of Z with respect to the subgroup 3Z. This only works because 3Z is normal.

Formal. Let (G, ∗) be a group, N ⊴ G be a normal subgroup of G. Then de�ne G/N to
be the set of cosets of N in G. That is,

G/N = {gN : g ∈ G}.
The operation is as follows: for all a, b ∈ G,

(aN) ∗ (bN) = (a ∗ b)N.

By Propositions 2.46 and 2.47, the de�nition of this operation is unambiguous � every
element uniquely represents a coset and the operation is independent of which representa-
tive we choose. We can show (G/N, ∗) forms a group, which we call the quotient group
of G with respect to N .

Example 2.49. We neededN to be normal in De�nition 2.48 because otherwise, the group
operation is not well-de�ned. For instance, we showed in Example 2.40 that {e, F1} ≤ D3

is not a normal. Call this subgroup ∆. Then

R2∆ = F2∆ = {R2, F2},
but then

R2∆ ◦ (R2∆) = R1∆ = {1, F3},
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while

F2∆ ◦ F2∆ = ∆ = {1, F1}.
Therefore, the operation is not independent of the representative we choose for the cosets,
and so does not have a well-de�ned output. This is recti�ed by our choice of N to be
normal.

Remark 2.50. In fact, if (G, ∗) is a group with subgroup H ≤ G, then (G/H, ∗) is a
group if and only if H is normal in G.

Example 2.51. Recall {1}, G ⊴ G are normal subgroups. ThenG/G has just one element,
while G/{1} is isomorphic to G. That is, G/G ∼= {1}, G/{1} ∼= G.

Example 2.52. By taking the determinant homomorphism (Example 2.14) on the quo-
tient GL(n,R)/SL(n,R) (Example 2.41), we get det : GL(n,R)/SL(n,R) → R× via

det(A(SLn(R))) = det(A)

for all A(SLn(R)) ∈ GL(n,R)/SL(n,R). We can check that det is independent of the
choice of representative, and in fact, is a group isomorphism. Thus, GL(n,R)/SL(n,R) ∼=
R×.

Example 2.53. Z/3Z, as discussed in De�nition 2.48, is a quotient group. This group
represents arithmetic modulo 3, where we only distinguish elements up to their remainder
when divided by 3. This idea can be generalized to Z/nZ for any n ∈ Z a positive integer.

3. Homotopy

Before getting to braids, there is one more thing we need � that is the notion of a
�continuous deformation.� For example, if we are to talk about braids, there must be a
bit of wiggle room in what makes a braid. To illustrate, these messy strands

can easily be turned into the braid

just by nudging the blue strand up a bit and nudging the pink strand down a bit. Maybe
it would be a bit unfair or unproductive to say these are di�erent braids, simply because
their strands do not strictly occupy the same coordinates in space. But to speak about
this precisely, we must make precise what we mean by �nudging.�

De�nition 3.1 (Homotopy).
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Figure 3. Continuous functions f, g : [0, 1] → R2

Informal. The most basic form of a �nudge� is a homotopy. To illustrate, suppose f
and g are functions that parameterize a line segment in R2. So f, g can be a continuous
functions [0, 1] → R2 as below in Figure 3:

We call these paths in R2. Now let's say we want to �nudge� the path f to be the path
g. Intuitively, this is something we can do, say if f and g represent strings on a table.
To express this mathematically, we must write a function that parameterizes the paths
themselves.

At time 0, the function must output the path f , and at time 1, the function must output
the path g. All this must be done continuously, without skipping any space or breaking
the strings, as below in Figure 4:

Figure 4. A homotopy from f to g.
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Perhaps this is easier to do than it sounds. In this case, the function is given by
F : [0, 1]2 → R2 where for all (s, t) ∈ [0, 1]2,

F (s, t) = f(s)(1− t) + g(s)t.

Observe that at time t = 0, F (s, 0) gives the path f(s), and at time t = 1, F (s, 1) is the
desired path g(s). As F is a sum of products of continuous functions, F is itself continuous,
so no breaking or skipping occurs.

Formal. Let U ⊂ Rn, V ⊂ Rm be arbitrary subsets, and f, g : U → V continous functions.
A homotopy from f to g is a continuous function

F : U × [0, 1] → V

such that

F (x, 0) = f(x),

F (x, 1) = g(x).

When such a homotopy exists, we say f and g are homotopic.
To simply notation, we often denote F (x, t) = Ft(x) for all t ∈ [0, 1], where Ft is a

function U → V .

Moving forward, we assume all functions are continuous.

Proposition 3.2. Let ∼ denote the relation on functions U → V where f ∼ g if and only
if there exists a homotopy from f to g. Then ∼ is an equivalence relation (Def. 2.27).

Proof.

Informal. Homotopy behaves quite like equality, on many many levels. But it all starts
with homotopy being an equivalence relation. Every function is homotopic to itself simply
by a homotopy that keeps it still for all t ∈ [0, 1]. Moreover, if f can be deformed to g
by a homotopy, then it makes sense we can deform g back to f by reversing the motion.
And, if we can deform f to g, then g to h, we can f deform to h in the same time frame
just by performing both deformations twice as fast in succession.

Formal. We must prove ∼ is re�exive, symmetric, and transitive.

(i) To see ∼ is re�exive, let f : U → V be arbitrary. Then the function

F : U × [0, 1] → V

de�ned by

F (x, t) = f(x)

is a homotopy from f to itself. Thus f ∼ f .
(ii) To see ∼ is symmetric, suppose we have f, g : U → V such that f ∼ g. That is,

there is a homotopy

F : U × [0, 1] → V.

Then we de�ne

F : U × [0, 1] → V

by

F (x, t) = F (x, 1− t).
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Then

F (x, 0) = F (x, 1) = g(x),

F (x, 1) = F (x, 0) = f(x)

shows F is indeed a homotopy from g to f , so g ∼ f .
(iii) To see ∼ is transitive, suppose f, g, h : U → V satisfy f ∼ g, g ∼ h. Then there

exist
F,G : U × [0, 1] → V

where F is a homotopy from f to g and G is a homotopy from g to f . Then de�ne

H : U × [0, 1] → V

via

H(x, t) =

{
F (x, 2t) if 0 ≤ t ≤ 1

2 ,

G(x, 2t− 1) if 1
2 ≤ t ≤ 1.

One can check H is a homotopy from f to h, so f ∼ h.

□

Since H is an equivalence relation, it is unambiguous to say f and g are homotopic if
f ∼ g.

Remark 3.3. For readers who know topology, the de�nition of homotopy extends to any
maps f : X → Y . The other de�nitions in this section will also have natural topological
generalizations.

Example 3.4. As may be evident from the discussion in De�nition 3.1, given any paths
f, g : [0, 1] → R2, there is is a homotopy from f to g given by F : [0, 1]2 → R2,

F (s, t) = f(s)(1− t) + g(s)t.

Example 3.5. The existence of homotopies depends on the choice of codomain. Given
the paths f, g : [0, 1] → R2 \ {(0, 0)} de�ned by

f(t) = (sin(2πt), cos(2πt)),

g(t) = f(t) + (1, 1),

pictured in Figure 5 below, there is no function that can move f to g without breaking or
skipping at the origin.

Example 3.6. Here's a more interesting example. Let C denote the hollow cylinder
S1 × [0, 1] ⊂ R3. Let the functions id : C → C, r : C → C be de�ned by

id(x, s) = (x, s),

r(x, s) = (x, 0).

They are both continuous. Observe that r is collapsing all of C onto the base circle
S1 × {0}. We claim there is a homotopy from id to r.

Let F : C × [0, 1] → C be de�ned by

F ((x, s), t) = (x, s(1− t)).

This function is continuous and indeed,

F ((x, s), 0) = (x, s) = id(x, s),

F ((x, s), 1) = (x, 0).
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Figure 5. f and g are homotopic as paths in R2, but not as paths in
R2 \ {(0, 0)}. There is no way to move f to g without f at the origin.

This gives r a nice physical interpretation. We can think of id as representing the cylinder
C in its original state, not changing the positions of any points. Then, to apply r, we
squish C down to a circle in accordance to F until we reach r. So r can be interpreted
squishing C down. This is pictured below in Figure 6.

Figure 6. Physical interpretation of r from Example 3.6 via the homo-
topy from id to r. As time progresses from t = 0 to t = 1, we move the
points of C in accordance to where they are mapped by f until we get r.

We will set up some more terminology.

De�nition 3.7. Let U ⊂ Rn, V ⊂ Rm, and let f : U → V be a continuous function. If
f is a continuous function with a continuous inverse, we say f is a homeomorphism. If
there is a homeomorphism between U and V , we say U and V are homeomorphic and
write U ∼= V .

Like homotopy, homeomorphism de�nes an equivalence relation. Hence, it is unam-
biguous to say two spaces are homeomorphic.



18 OLIVIA HU

Example 3.8. Let U ⊂ Rn. The identity map U → U is continuous and is its own inverse.
Hence, it is a homeomorphism. We say U ∼= U , or U is homeomorphic to itself.

Example 3.9. The function f : R → R de�ned by f(x) = x3 is a homeomorphism because
f−1 : R → R, f−1(x) = x1/3 is continuous.

Example 3.10. The function f : R → R de�ned by f(x) = x2 is not a homeomorphism
because f is not injective, hence has no inverse R → R.

Example 3.11. It is not true in general that if a function is continuous and invertible,
that its inverse is continuous. For example de�ne f : [0, 1) → S1 via

f(x) = (cos(2πx), sin(2πx))

(pictured in Figure 7).

Figure 7. f of Example 3.11 is something like this. The interval [0, 1)
maps bijectively and continuously onto S1, but reversing this function
will break S1.

Observe f wraps the interval [0, 1) into a circle. This is continuous and bijective, hence
invertible. However, the inverse requires the circle to taken to the interval [0, 1). This
breaks the circle, hence is not continuous.

De�nition 3.12. Let f : U → V be a continuous function, and letW ⊂ V be the image of
f . If the function f : U → W given by f is a homeomorphism, we call f an embedding.

Example 3.13. Embeddings are not as restrictive as homeomorphisms, but give more
well-behaved functions than with just continuity. For example, the curve in Figure 8 is
continuous, but not an embedding. Likewise, the curves in Figure 5 are not embeddings
(though they can be rewritten as embeddings S1 → R2).

Meanwhile, the curves of Figure 3 are embeddings.

This allows us to de�ne a stronger type of homotopy.

De�nition 3.14. Let U ⊂ Rn, V ⊂ Rm, and f, g : U → V be embeddings. Then a
homotopy F : U × I → V from f to g is an isotopy if F (s, t) is an embedding for all �xed
t ∈ [0, 1]. If there is an isotopy between two embeddings, then we say they are isotopic.

In short, an isotopy is a homotopy that is particularly nice.
Like homotopy and homeomorphisms, isotopy de�nes an equivalence relation. Hence it

is unambiguous to say two embeddings are isotopic.
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Figure 8. Continuous, but not embedded path [0, 1] → R2.

4. Introduction to Braids

We are �nally ready to study braids. We will see quickly that this study puts to good
use the accumulated knowledge of the previous sections.

De�nition 4.1 (Braid [MK99, p. 3], [FM12, p. 240]).

Informal. To construct a mathematical braid with n strands, pick n points on a disk in
3-dimensional space. Then pick a parallel disk with the same distinguished points. We
obtain a braid on n strands by drawing non-intersecting lines between the points on the
two planes. The lines are not allowed to go backward.

Formal. Fix a positive integer n. Let p1, . . . , pn be points in the 2-disk D2. A braid on

n strands, or n-braid, is a collection of n paths fi : [0, 1] → D2 × [0, 1], 1 ≤ i ≤ n, called
strands, and a permutation f ∈ Sn such that each of the following holds:

(i) the strands fi([0, 1]) are disjoint,
(ii) fi(0) = (pi, 0),
(iii) fi(1) = (pf(i), 1),

(iv) fi(t) ∈ D2 × {t} for all t ∈ [0, 1].

Moving forward, we �x points p1, . . . , pn for all positive integers n. We will assume every
n-braid has these starting/ending points. Moreover, when we say β = {fi : 1 ≤ i ≤ n}
is an n-braid, we will also use β to mean the subset of strands in D2 × [0, 1] given by β.
Therefore, if we have a function f whose domain is D2 × [0, 1], the expression f(β) makes
sense.

To simplify notation, we will denote D = D2 × [0, 1].

Example 4.2. In Figure 9, we have two examples of braids on 3 strands, which we refer
to as 3-braids. These braids are a subset of the cylinder formed by the parallel disks, or
D. Moving forward, we omit the disks in �gures.

Example 4.3. In Figure 10, we have three non-example of braids.

De�nition 4.4 (Braid equivalence [MK99, p. 96]).

Informal. We want to say two braids are the same if we can pull the strands around
so that they are equal. For example, we want to say the three braids in Figure 11 are
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(a) (b)

Figure 9. (a): On the left, we have what's technically a braid on 3
strands. We can describe this by the paths fi(t) = pi for all t ∈ [0, 1].
(b): On the right, a slightly more interesting braid on 3 strands.

(a) (b) (c)

Figure 10. (a) and (b) are not braids because they turn back on the-
selves. (c) is not a braid because the points are not permuted.

Figure 11. These three 2-braids are equivalent.

the same. The rules are, strands cannot cross each other and the starting/ending points
cannot change. They are like in�nitely elastic rubber bands.

Formal. Denote D = D2 × [0, 1]. We declare two braids β and β′ equivalent if there
exists a continuous map

h : D× [0, 1] → D
such that:

(i) for all t ∈ [0, 1], ht : D → D is a homeomorphism,
(ii) for all t ∈ [0, 1], ht is the identity on the cylindrical boundary of D. That is, ht

�xes the boundary pointwise.
(iii) h0 is the identity and h1(β) = β′. We call h an ambient isotopy.

An ambient isotopy is even stronger than an isotopy. In the previous de�nition (Def.
4.4), we obtain an isotopy from β to β′ by hitching a ride on an isotopy of homeomorphisms
of the entire space D. It is quite strict, but the ambient isotopy is equivalent to the intuitive
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notion of pulling and nudging the strands without breaking them or crossing them through
each other.

Author comment. In truth, I do not know why an ambient isotopy is required as opposed
to simply an isotopy of the map β : {p1, . . . , pn}×I → D that �xes the endpoints. Although
I understand how all knots can be isotoped to the unknot, I have not seen similar arguments
for braids. If anyone has an explanation or counterexample, I would very grateful to hear
it!

Remark 4.5. There is also a much more easy notion of braid equivalence formulated in
terms in elementary moves. It takes no fancy math to understand, and the interested
reader can �nd it in [MK99, p. 4].

Example 4.6. The braids in Figure 12 are equivalent.

(a) (b)

Figure 12. These 4-braids are equivalent. From (a), shift the pink line
upward and nudge the orange line down to get (b).

Example 4.7. The braids in Figure 13 are not equivalent.

Figure 13. These 2-braids are not equivalent

The braid equivalence we have de�ned turns out to be an equivalence relation (Def.
2.27). But arguably this is what we would expect: after all, we want to partition big
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collections of braids into subsets of braids that are equivalent. As desired, the equivalence
class of any braid ends up being the set of all braids equivalent to it.

From now on, when we say braid, we will actually be referring to the whole class of
braids we have deemed equivalent. When we say, for example, that β is a braid, remember
β is a representative of some class of equivalent braids.

De�nition 4.8.

Informal. Now that we have put our intuition of equivalent braids into mathematics, we
can see this structure is truly a very natural one, despite the complicated formalisms. We
can now de�ne a product on the set of braids that is nice enough to form a group structure.

The product of braids β and β′ with the same number of strands is simply connecting
β′ to the end of β. Technically, braids must be parameterized by the interval [0, 1], so the
new braid will have to be reparameterized to travel the two braids twice as fast.

Therefore, we can now form a braid group, whose elements are equivalence classes of
braids with the some �xed number of strands, and where the multiplication is concatenat-
ing the braids.

Formal. We de�ne the braid group on n strands Bn to be the set of equivalence
classes of braids where the product of any two braids {fi : 1 ≤ i ≤ n}, {gi : 1 ≤ i ≤ n} is
{hi : 1 ≤ i ≤ n} where for all 1 ≤ i ≤ n,

hi(t) = fi(t) ∗ gi(t) =

{
fi(2t) if 0 ≤ t ≤ 1

2 ,

gf(i)(2t− 1) if 1
2 ≤ t ≤ 1.

Indeed, we can verify the braid product ∗ is well-de�ned. That is, if we have βi and β′
i

are equivalent for i = 1, 2, then β1 ∗ β2 and β′
1 ∗ β′

2 are equivalent: there is no ambiguity
in choice of representatives. Moreover, we can verify ∗ is associative, that the braid given
by fi(t) = pi for all 1 ≤ i ≤ n gives an identity element in Bn, and that the mirror image
of every braid is its inverse.

Every one of these properties can be seen by just drawing pictures. In the process, we
would also realize that the notion of equivalence was essential here.

Example 4.9. In Figure 14, we see two examples of braid products. Observe in (a) that
when we take the product of a braid with the identity, we can pull the braid back to the

Figure 14. (a): On the left is the product of the 2 braids of Figure 9,
denote it e ∗ σ. Note that e ∗ σ = σ = σ ∗ e, since we can always pull the
product strand back to σ. (b): On the right is the product of the braids
of Figure 13. Note their product can be deformed to the identity, so they
are inverses.
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None of these identities or inverses of the last example (Example 4.9) would have worked
without the liberty to pull strands around. Associativity similarly relies on this as well,
since di�erent parenthesis placement results in the component braids taking up di�erent
shares of space in their product. If the author's shady reasoning is to be believed, then
we well and truly have a group!

Example 4.10. Figure 15 showcases more braid multiplication in B2, just for fun!

(a) σ1 (b) σ2

(c) σ1 ∗σ2 = σ−1
2 by pulling up the pink through

and pushing down the blue crest.

(d) σ2 ∗σ1 = σ−1
2 by pulling up the blue through

and pushing down the pink crest.

Figure 15. Braids in B2.

Example 4.11. The braid group on 1 strand has just one element: the braid given by
just a single straight line. Therefore, B1

∼= {e} where {e} is the trivial group (Def. 2.4).
One can show the braid group on 2 strands is isomorphic to (Z,+).

Example 4.12. One thing we can observe about Bn is that none of the braid groups for
n > 2 are abelian. The strategy is simple: each braid {fi : 1 ≤ i ≤ n} has a corresponding
permutation f ∈ Sn. Then given two braids β, β′ ∈ Bn with permutations σ, σ′ ∈ Sn, the
permutation of β ∗ β′ must be σ′ ◦ σ. Likewise, β′ ∗ β must have permutation σ ◦ σ′.

However, Sn is not abelian for n > 2, so Bn cannot be abelian for n > 2 as well. One
neat way to see this is to recall the Dihedral group D3 from Example 2.9, where from
Figure 2, F3 ◦ R ̸= R ◦ F3. But from the discussion in De�niton 2.11, elements of D3

can be regarded as elements in S3. Thus, take any braids β, β′ ∈ Bn that permute the
�rst three points p1, p2, p3 via R and F3 respectively (we can prove these exist simply by
drawing an example). Then it cannot possibly be that β ∗ β′ = β′ ∗ β.
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5. Mapping Class Groups

Now we have �nally de�ned braid groups, but how do they relate to the symmetries of
a disk? Like how we considered braids to be same up to �nudging,� we now want to do
the same for functions. Doing so will be a much more straightforward applications of the
de�nitions from Section 3.

De�nition 5.1. Let U ⊂ Rn be an arbitrary subset of Rn, V ⊂ U an arbitrary subset of
U . We de�ne

Homeo(U, V ) = {f : U → U | f a homeomorphism such that f(v) = v for all v ∈ V }.

In other words, Homeo(U, V ) is the set of all homeomorphisms of U to itself that �x V
pointwise. Under composition, Homeo(U, V ) is a group.

Remark 5.2. As with homotopies, this de�nition extends to arbitrary topological spaces.

We will now use this group to de�ne a relation.

De�nition 5.3. Let f, g ∈ Homeo(U, V ) be arbitary. We say f and g are isotopic in
Homeo(U, V ) if there is an isotopy

F : U × [0, 1] → U

from f to g such that for all t ∈ [0, 1], Ft ∈ Homeo(U, V ).

Note that the use of isotopy rather than homotopy in the last de�nition (Def. 5.3) is
unnecessary since the only allowed Ft are homeomorphisms anyway. Nonetheless, it is
standard to say isotopy.

Isotopy in Homeo(U, V ) de�nes an equivalence relation, which gives a partition of the set
Homeo(U, V ) into subsets of functions that are isotopic in Homeo(U, V ). Like with braids,
we would like to regard isotopic functions as equivalent and work with the equivalence
classes. But do the resulting equivalence classes form another group?

The answer lies in the subset

Homeo0(U, V ) = {f ∈ Homeo(U, V ) : f is isotopic to id in Homeo(U, V )}.

Proposition 5.4. Homeo0(U, V ) is a normal subgroup of Homeo(U, V ).

Proof. First, we will show Homeo0(U, V ) is a subgroup of Homeo(U, V ). Suppose f, g ∈
Homeo0(U, V ). Then there exist isotopies F,G : U × [0, 1] → U from f and g to the
identity such that for all t ∈ [0, 1], Ft, Gt are homeomorphisms that �x V pointwise. It
follows that the function de�ned by

H : U × [0, 1] → U,

H(x, t) = F (G(x, t), t)

is a homotopy from f ◦ g to id such that for all t ∈ [0, 1], v ∈ V , Ht(v) = v. Moreover, the
function de�ned by

J : U × [0, 1] → U,

J(x, t) = F−1
t (x)

is a homotopy from f−1 to id that also �xes V pointwise. It follows that Homeo0(U, V ) is
a subgroup.



THE BRAID SYMMETRIES OF A DISK 25

Next, we will show Homeo0(U, V ) ≤ Homeo(U, V ) is normal. Let f ∈ Homeo0(U, V ),
g ∈ Homeo(U, V ) be arbitrary. Then let F : U × [0, 1] → U be an isotopy of f to the
identity in Homeo(U, V ). It follows that the function de�ned by

H : U × [0, 1] → U,

H(x, t) = (g ◦ F )(g−1(x), t)

is a homotopy from g ◦ f ◦ g−1 to id in Homeo(U, V ). Thus, g ◦ f ◦ g−1 ∈ Homeo0(U, V ),
so Homeo0(U, V ) ⊴ Homeo(U, V ). □

We will now see why the normality of Homeo0(U, V ) is essential to creating our desired
group.

Proposition 5.5. Let ∼ be the relation on Homeo(U, V ) where for all f, g ∈ Homeo(U, V ),
f ∼ g if and only if f and g are isotopic in Homeo(U, V ). Then the equivalence classes of
∼ are exactly the cosets Homeo0(U, V ) in Homeo(U, V ).

Proof. It is su�cient to show that given any f ∈ Homeo(U, V ),

[f ]∼ = f Homeo0(U, V ).

Suppose g ∈ [f ]∼. Then g is isotopic to f in Homeo(U, V ). Let F : U × [0, 1] → U be an
isotopy from g to f in Homeo(U, V ). Then observe the function

H : U × [0, 1] → U,

H(x, t) = (f−1 ◦ F )(x, t)

is an isotopy from f−1 ◦g to id in Homeo(U, V ). This means that f−1 ◦g ∈ Homeo0(U, V ).
But then

g = f ◦ (f−1 ◦ g) ∈ f Homeo0(U, V ).

Conversely, suppose g ∈ f Homeo0(U, V ). Then g = f ◦ h where h ∈ Homeo0(U, V ). Let
F : U× [0, 1] → U be an isotopy from h to id in Homeo0(U, V ). It follows that the function

H : U × [0, 1] → U,

H(x, t) = (f ◦ F )(x, t)

is an isotopy from f ◦ h = g to f in Homeo0(U, V ). Thus, g ∈ [f ]∼. We conclude

[f ]∼ = f Homeo0(U, V ).

Therefore, the equivalence classes [f ]∼ are the same as the cosets of Homeo0(U, V ). □

This �nally allows us to de�ne our desired group of equivalence classes.

De�nition 5.6 (Mapping class groups).

Informal. Recall how in the last section (Section 4), we grouped together all braids that
were reasonably similar and considered them as one object. When we formed the braid
groups, we operated on these classes of objects, and in fact this was necessary to reveal
the group structure.

In this case, the situation is not quite as di�cult. Homeo(U, V ) is already a group.
When our functions in Homeo(U, V ) can be reasonably nudged to be the same, we want
to regard them as equivalent and operate on those equivalence classes themselves.

In short, we want to turn the set of equivalence classes [f ]∼ into a group. In this
case, normal subgroups come to our rescue. The desired equivalence classes are, as luck
would have it, precisely the cosets of a normal subgroup. The resulting quotient group
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Figure 16. A standard visual of the Alexander trick by taking the func-
tion (F (x, t), t) where F is the isotopy. In other words, we are taking
what F (x, t) is at each time and moving that slightly out of the way of
what it was before. No information is lost and we get a nice visualization.

has elements [f ]∼ and inherits our desired group structure. We call this the mapping class
group MCG(U, V ) and call the equivalence classes [f ]∼ mapping classes.

Formal. The mapping class group of U with respect to V is the quotient group

MCG(U, V ) = Homeo(U, V )/Homeo0(U, V ).

We will denote mapping classes simply as [f ], dropping the ∼. Very often, even the
brackets are dropped, but we will avoid doing so in this paper.

We will work out a relevant example that will soon become very important: the mapping
class group of the disk D2 with respect to its boundary circle S1 ⊂ D2.

Lemma 5.7 (Alexander trick [FM12, p. 47]). The group MCG(D2, S1) is trivial.

Proof. Let [f ] ∈ MCG(D2, S1) be a mapping class. Then function F : D2 × [0, 1] → D2

de�ned by

F (x, t) =

{
(1− t)f

(
x

1−t

)
if 0 ≤ |x| < 1− t,

x if 1− t ≤ |x| ≤ 1,

for all t ∈ [0, 1] is an isotopy of f to id in Homeo(D2, S1). □

The idea of the Alexander trick is that for every t ∈ [0, 1], we apply f on a smaller disk
of radius 1 − t. The factor of 1 − t inside of f allows us to map every point of D2 for
each t, while the factor of 1− t outside shrinks the image to another disk of radius 1− t.
While we shrink f to a homeomorphism of smaller and smaller disks, we switch out the
remaining space with the identity map. See Figure 16 for a visual.

However, the key point is this: every homeomorphism of the disk, so long as it �xes
the boundary S1, is homotopic to the identity. What this means is, like how we could
interpret the function r in Example 3.6 as squishing the cylinder, we can think of every
boundary-�xing homeomorphism of the disk as some continuously pushing the points of
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the disk around. The pushing here is formally in accordance with the isotopy F (x, 1− t)
from id to f , where F and f are de�ned as in Lemma 5.7.

Intuitively, this makes such homeomorphisms of a disk rather intuitive: it is as if the
disk were made of soft clay, and we are kneading it around while ensuring the whole disk
remains covered, and without moving the boundary or breaking it.

This is not true in general for continuous functions or homeomorphisms. For example,
even the homeomorphism f : D2 → D2 given by f(x) = −x cannot be interepreted this
way.

Remark 5.8. For those who are interested, there is a lot to learn about mapping class
groups. In particular, a lot of work has been done on the mapping class groups of surfaces,
where for an orientable surface S, we focus on

MCG(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S),

the mapping classes of orientation-preserving homeomorphisms. For example, we know
that for every compact orientable surface, possibly with �ntely many marked points that
must be permuted, MCG(S) is �nitely presented [FM12, p. 137], and we can write a
presentation down. The same is true for compact non-orientable surfaces with �nitely
many marked points [Kor02].

For orientable surfaces, [FM12] is great (I think it's amazing!). For non-orientable
surfaces, try [Par14].

6. Punctured Disk and Braids

The group MCG(D2, S1) was the �nal piece we needed to formally connect braids to
disks.

Theorem 6.1 ([FM12, p. 243]). Let Dn denote D2 \ {p1, . . . , pn}. Assume none of the
points pi are on the boundary circle of D2. Then

Bn
∼= MCG(Dn, S

1).

This is not very elementary to prove, but the intuition is much easier. First, we must
state the following characterization of homeomorphisms Dn → Dn.

Proposition 6.2. Fix n points p1, . . . , pn ∈ D2 not on the boundary. Let Homeop(D
2, S1)

denote the subgroup of Homeo(D2, S1) that permutes the pi's. In other words, for all
f ∈ Homeop(D

2, S1), there exists σ ∈ Sn such that f(pi) = pσ(i) for all 1 ≤ i ≤ n. Then

Homeo(Dn, S
1) ∼= Homeop(D

2, S1).

Proof.

Informal. The proof of this is a bit technical, but the idea is this. Whenever we have a
homeomorphism of the punctured disk Dn, we can actually ��ll in� the punctures and send
them to each other. For any f : Dn → Dn a homeomorphism, f being a homeomorphisms
ensures each of these punctures has one and only one other puncture they can go to. We
�nd this by checking all the points around each puncture. By continuity, they must all be
sent to an area roughly around another puncture. This allows us to extend functions of
punctured disks to functions of the whole disk that simply permute the pi's around.

This corresondence goes both ways. Given any homeomorphism that permutes the pi's,
we can de�ne a new homeomorphism Dn → Dn just by restricting the domain to Dn.

The proof is on the technical side. A rigorous understanding of it is not required.
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Formal. Let f ∈ Homeo(Dn, S
1), and pick mutually disjoint punctured neighborhoods Ui

for each point pi. We will de�ne f ∈ Sn as follows. Since f is a homeomorphism, the image
of each Ui must be another punctured neighborhood of some pj , 1 ≤ j ≤ n. Let f(i) = j.

Observe that f is indeed a bijection. If i ̸= j, then the assumption Ui ∩ Uj = ∅ implies

f(Ui) ∩ f(Uj) = ∅ because f is a homeomorphism. But all punctured neighborhoods

of the same puncture must intersect. Thus, f(i) ̸= f(j). It follows f is injective, hence
bijective.

Then de�ning f̃ : D2 → D2 by

f̃(x) =

{
f(x) if x ∈ Dn

pf(i) if x = pi
,

we have a homeomorphism f̃ ∈ Homeop(D
2, S1). This gives us a group homomorphism

Φ : Homeo(Dn, S
1) → Homeop(D

2, S1),

Φ(f) = f̃ .

We can de�ne another homomorphism

Ψ : Homeop(D
2, S1) → Homeo(Dn, S

1)

Ψ(f) = f |Dn

via restricting to Dn. Φ and Ψ are inverses, so we conclude

Homeo(Dn, S
1) ∼= Homeop(D

2, S1).

□

Therefore, whenever we consider a homeomorphism Dn → Dn, we may just as well
consider a homeomorphism D2 → D2 that permutes the pi's. This interpretation is quite
useful � recall the discussion after the Alexander trick (Lemma 5.7). Any homeomorphism
D2 → D2 that �xes the boundary can be obtained by an isotopy in Homeo(D2, S1) from
the identity.

This means that for any f ∈ Homeo(Dn, S
1), we can intuitively think of f as corresond-

ing to some �kneading� of D2. To get f , we continuously move the points of D2 around,
gradually moving each point x ∈ D2 to where the point f(x) used to be. At the end,
remove the pi's. Since we're thinking of deforming from the identity, this isotopy is the
one from the Alexander trick, but backwards:

F (x, t) =

{
xf

(
x
t

)
if 0 ≤ |x| ≤ t,

x if t ≤ |x| ≤ 1.

Really all we are doing is reversing where t = 0 and t = 1 are on Figure 16.
But in this process, pay special attention to how each point pi traces out a path on D2

to some pf(i) as time moves from t = 0 to t = 1. There is the connection! For each pi, we

are getting a path

γi : [0, 1] → D2

de�ned by how the point pi moves to pf(i). We will now make one modi�cation to the γi
by de�ning

fi : [0, 1] → D2 × [0, 1],

fi(t) = (γi(t), t).



THE BRAID SYMMETRIES OF A DISK 29

Figure 17. Observe how the Alexander lemma gives rise to the strands
of a braid.

In e�ect, the fi's �raise� the paths outside of D
2, having them move forward as time passes.

This is illustrated in Figure 17.
Observe that by de�nition, we have:

(i) the images fi[0, 1] are disjoint. This is because if for any time t, fi(t) = fj(t) for
some i ̸= j, then this implies that pi and pj were moved to the same location in
the �kneading� process. As we have covered, this is not allowed.

Physically, this means the paths we have de�ned never intersect each other.
(ii) fi(0) = (γi(0), 0) = (pi, 0).
(iii) fi(1) = (γi(1), 1) = (pf(i), 1).

(iv) For any t ∈ [0, 1], fi(t) = (γi(t), t) ∈ D2 × {t}.
But recall from De�nition 4.1 that these conditions are precisely what de�nes a braid.
Thus, from an arbitrary homeomorphism f : Dn → Dn, we have obtained {fi : 1 ≤ i ≤ n},
a braid on n strands! Let's call {fi : 1 ≤ i ≤ n} = βf . But does this association still make
sense for mapping classes?

Let's at least verify �rst that isotopic functions in Homeo(Dn, S
1) give equivalent braids.

Proposition 6.3. The function

Φ : MCG(Dn, S
1) → Bn

de�ned by

Φ([f ]) = {fi : 1 ≤ i ≤ n} = βf

as in the preceding discussion is well-de�ned.

Proof.

Informal. We wish to show that Φ makes sense. Of course, given an arbitrary homeo-
morphism in Homeo(Dn, S

1), it makes sense by our discussion that we just get the braid
βf . But for a quotient group like MCG(Dn, S

1), if we take an arbitrary mapping class
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[f ], do we get βf regardless of what representative we choose. It is not immediately clear
that if g ∈ [f ], βg is equivalent to βf .

The way we do it here is by working explicitly with the braid formulas for f and g given
by the Alexander trick, then extending the isotopy H from f to g to the entire braid.
Visually, we are moving the whole braid from f to g in accordance with H. A bit more
technical work is done to make this an ambient isotopy.

Ostensibly, this is the �rst step of a proof thatMCG(Dn, S
1) ∼= Bn. Using this strategy,

we would want to show that Φ is also a homomorphism, and in fact bijective (technically, Φ
is not a homomorphism in its current state, but we address this later). However, this is not
how this theorem is conventionally proven. The proof is not easy, and we use much more
powerful tools to tackle it. The following argument is included just to make the theorem
seem more convincing using only elementary arguments. It may also demonstrate why
continuing in this manner is not very sustainable.

Formal. Suppose f ∼ g in Homeo(Dn, S
1). Then let F,G : D → D2 be the isotopies

from id to F and G respectively given by the Alexander trick. We use these to de�ne

F̃ , G̃ : D → D,

F̃ (x, s) = (F (x, s), s),

G̃(x, s) = (G(x, s), s).

Since f ∼ g, let H : D → D be an isotopy from id to g ◦ f−1 (given by �lling in the
missing points of the corresponding isotopy in Homeo(Dn, S

1)). Then h : D × [0, 1] → D
de�ned by

h((x, s), t) =

{(
sH

(
x
s , t

)
, s
)

if0 ≤ |x| ≤ s,

(x, s) if s ≤ |x| ≤ 1.

satis�es

(i) for all t ∈ [0, 1], ht : D → D is a homeomorphism,
(ii) for all t ∈ [0, 1], ht �xes the boundary of D,
(iii) h0(x, s) = (x, s) is the identity and

h1(fi(s)) = h1(F (x, s), s) =

{(
s(g ◦ f−1)

(
F (pi,s)

s

)
, s
)

if0 ≤ |F (pi, s)| ≤ s,

(F (pi, s), s) if s ≤ |F (pi, s)| ≤ 1

=


(
s(g ◦ f−1)

(
sf( pi

s )
s

)
, s

)
if 0 ≤ |pi| ≤ s,

(pi, s) if s ≤ |pi| ≤ 1

=

{(
sg

(
pi

s

)
, s
)

if 0 ≤ |pi| ≤ s,

(pi, s) if s ≤ |pi| ≤ 1

= G̃(pi, s) = gi(s).

It follows that h is an ambient isotopy taking βf to βg, so βf and βg are the same braid.
Thus, Φ is independent of our choice of mapping class representative and therefore well-
de�ned.

□

In the discussion preceding the proof of Proposition 6.3, we brie�y mentioned Φ is
not technically a homomorphism in its current state. This is because it's backwards:
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Φ([f ] ◦ [g]) = βg ∗ βf . The reason is that f ◦ g is the function that applies g �rst, then f ;
meanwhile βf ∗ βg is �rst the braid given by f , then the braid given by g.

The �x for this is easy. We just rede�ne composition in MCG to go backwards. We
will say (f ◦ g)(x) = g(f(x)). This is not too unreasonable: if β ∗ β′ is �rst β, then β′,
then why should f ◦ g be g �rst, then f? In some texts, this is the convention, and it
ultimately makes no di�erence to the group structure (they are isomorphic). We will make
this adjustment moving forward (I did not introduce it this way because it confuses me a
lot).

The proof Φ is a homomorphism, and indeed an isomorphism, is much more involved.
We will omit it in lieu of a more intuitive discussion.

Author comment. I am not actually aware if there is an elementary proof in this style.
Probably there is a way to at least show Φ is a homomorphism, but I have not found or
constructed an elementary argument for it using just ambient isotopy. If anyone has or
knows of one, I would love to know it!

Ultimately, what does this isomorphism tell us about the relationship between braids
and homeomorphisms of the punctured disk?

(i) First, the very fact Φ is a homomorphism tells us that if we deform the disk in
accordance to f , then in accordance to g, that very process is no di�erent (up to
isotopy by homeomorphisms) to deforming the disk in accordance to f ◦ g.

(ii) Second, that Φ is a bijective tells us that every braid arises from a mapping
class of homeomorphisms in Homeo(Dn, S

1). Likewise, every mapping class of
homeomorphisms in Homeo(Dn, S

1) uniquely gives a braid � any other mapping
class will give a di�erent braid.

(iii) Third, from the correspondence of mapping classes and braids, we see that knead-
ing around a homeomorphism in Homeo(Dn, S

1) is essentially no di�erent from
nudging around a braid on n strands.

This brings us to our �nal point: by endowing group structures to our objects � homeo-
morphisms and braids � we are able to speak precisely about the correspondence of struc-
tures between homeomorphisms and braids. Braids and mapping classes in MCG(Dn, S

1)
correspond one-to-one, and the natural operations on each correspond perfectly as well.
Up to multiplying, these are exactly the same.

Besides just being interesting, this correspondence is quite useful for talking about
mapping classes in general. For example, while homeomorphisms can be rather di�cult
to write down explcitly, in the case of the disk, we can simply specify a braid rather
than write down an explicit formula. Writing down and composing functions can all be
substituted by drawing braids. Or we can tell if two functions are the same by examining
their braids. and when we compose functions, we need only multiply their braids.

This is not limited to the disk. �Surfaces,� such as the sphere, torus, klein bottle, etc.
all contain disks. If a torus has some punctures in it, we can cut out a disk, apply braids,
then glue that disk back to get a mapping class of the torus (we call this a half dehn twist).

This means, remarkably, that braids do not just describe the mapping classes of a
punctured disk, but in fact of all shapes that have disks inside of them. All because we
realized braids can be multiplied.

7. The proof?

The main storyline of this paper is over, but probably there are readers interested in
the proof that MCG(Dn, S

1) ∼= Bn.
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The techniques are quite beyond the scope of this paper, but they are worth learning.
They are accessible after a typical �rst course in algebraic topology.

The braid group on n strands is the same as the fundamental group of the unordered
con�guration space C(D2, n). Then we use the generalized Birman exact sequence, where
for any orientable surface S, Sn = S \ {p1, . . . , pn}, there is an exact sequence

1 → π1(C(S, n))
Push−−−→ MCG(Sn, ∂Sn)

Forget−−−−→ MCG(S, ∂S) → 1.

Roughly, we de�ne Push by taking Dehn twists around the loops in C(S, n), Forget is the
natural map where we �ll in the punctures, and the exact sequence is obtained by the
long exact sequence of homotopy groups of the �ber bundle (the LES of a �ber bundle is
covered in Chapter 4 of [Hat02]),

Homeo+(Sn, ∂Sn) → Homeo+(S, ∂S) → C(int(S), n).

Of course, since MCG(D2, S1) is trivial, we get

Bn
∼= π1(C(D2, n)) ∼= MCG(D2, S1).

The full exposition is covered in detail in [FM12].
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