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To motivate this paper, I shall simply sate two theorems, which we will endeavor to prove;

Existence: For any irreducible root system Φ, there exists a simple Lie algebra over C which has a root

system equivalent to Φ.

Uniqueness: It is also the case that any two Lie algebras over C with equivalent root systems are

isomorphic.

2 Root systems

Definition: A Euclidean vector space is a real vector space V with a positive definite symmetric bilinear

form which we will call the dot product, i.e a bilinear form B such that B(v, w) = B(w, v) for all v, w ∈ V

and B(v, v) > 0 ∀v ̸= 0.

Definition: Let Φ be a subset of a finite dimensional real vector space V which is equipped with the dot

product. Φ is a root system if:

• Φ is a finite set of non-zero vectors

• Φ spans V .

• α, β ∈ Φ =⇒ β − 2⟨α,β⟩
⟨α,α⟩ α ∈ Φ

If the root system is crystalline, then we have a fourth condition:

• α, β ∈ Φ =⇒ 2⟨α,β⟩
⟨α,α⟩ ∈ Z

Definition: A subset ∆ ⊂ Φ is a base if the following conditions are satisfied:
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• ∆ is a basis for V as s vector space, where Φ ⊆ V

• Each root α ∈ Φ can be expressed as a linear combination of elements in ∆ with linear coefficients such

that the coefficients are either all positive or all negative.

A root in ∆ is called a simple root.

Definition: Let ⟨β, α⟩ = 2(α,β)
(α,α) . Two root system (V1,Φ1) and (V2,Φ2) are isomorphic if there is an

invertible linear map between V1 and V2 that preserves ⟨α, β⟩.

Definition: For α ∈ V , Hα denotes the hyperplane perpendicular to α, i.e β ∈ V : ⟨α, β⟩ = 0

In any root system Φ the hyperplanes Hα for some α divide V into connected components, which are the

Weyl chambers of V .

Definition: Let Φ be a root system in a Euclidian space V . For each root α ∈ Φ, define sα(β) as β−2 (β,α)
(α,α)α

where (, ) is the inner product on V . The Weyl group of Φ is the subgroup generated by the sα

It is a fact that every root is conjugate to a simple root under the Weyl group.

Definition: A root system Φ which is non empty is said to be irreducible if it is not the direct sum of two

nonempty root systems

Definition: A nonempty root system Φ is said to be reducible if it can be written as a disjoint union of

nonempty root system Φ1,Φ2, i.e Φ = Φ1

⊔
Φ2

Each root system can be written as the direct sum of irreducible root systems, and this summation is

unique up to the ordering of the terms. Therefore, it suffices to only consider the irreducible root systems

in our classification.

2.1 Examples

Take V = R2 with the standard basis {e1, e2}. The A1 root system Φ = {e1 − e2, e2 − e1} is pictured below:

We can check the integrality condition:

2(e1 − e2, e2 − e1)

(e2 − e1)
=

2(−1− 1)

(1 + 1)
= −2
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Let e1, e2, e3 be the standard basis of R3. The A2 root system Φ = {e1 − e2, e2 − e1, e1 − e3, e3 −

e1, e2 − e3, e3 − e2} is a root system in the subspace V = Span(Φ), which is the plane with normal vector

e1 + e2 + e3. This root system is the A2 root system, and fulfills the last integrality condition, and has base

∆ = {e1 − e2, e3 − e1}

In general, we can define the Al root system as Φ = {±(ei, ej) : 1 ≤ i|j ≤ l+ 1} where e1, e2, ....., el+1 is the

standard basis of Rl+1, and V = Span(Φ) ⊂ Rl+1 equipped with the dot product.

We now consider the more complex G2 root system. Let e1, e2, e3 and V be as before. Then, the G2 root sys-

tem is the set of vectors {±(e1−e2),±(e1−e3),±(e2−e3),±(2e1−e2−e3),±(2e2−e1−e3),±(2e3−e1−e2)} =

A2 ∪{±(2e1 − e3 − e3),±(2e2 − e1 − e3),±(2e3 − e1 − e2)}. Let α = e1 − e2 and β = 2e2 − e1 − e3. The base

for G2 is ∆ = {α, β}.

2.2 Classification

It is an interesting consequence that the integrality condition yields some constraints on the possible angles

between two roots. Consider the following:

⟨β, α⟩ ⟨α, β⟩ = 2
(α, β)

(α, α)

2(α, β)

(β, β)
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= 4
(α, β)2

|α|2|β|2
= 4 cos2(θ) = (2 cos θ)2 ∈ Z

Since 2 cos θ ∈ [−2, 2], we see that the only possible values for cos θ are 0,± 1
2 ,±

√
2
2 ,±

√
3
2 ,±1.The correspond-

ing angles are 60◦, 120◦, 90◦, 45◦, 135◦, 30◦, 150◦, 0◦, 180◦. Recall that if α is a root, the only multiples of the

α in the root system are α and −α. Therefore, 0◦ and 180◦ are not possible angles, since they correspond

to 2α and −2α. We note that roots at an angle of 60◦ or 120◦ are of equal length, roots at an angle of 45◦

or 135◦ have a ratio of
√
2, and roots at an angle of 30◦ or 150◦ correspond to a length ratio of

√
3.

2.2.1 Dynkin Diagrams

Let Φ be a root system with base ∆. We can construct the associated Dynkin diagram by drawing a vertex

for each root in ∆ and drawing edges between these vertices according to the following rules:

• If the roots associated with two vertices is orthogonal, then there is no edge.

• If the two roots form an angle of 120◦, then there is an undirected single edge.

• If the vectors form an angle of 135◦, then there is a directed double edge.

• If the vectors form an angle of 150◦, there is a directed triple edge.

2.3 Examples

Recall the A2 root system. The Dynkin diagram has two vertices α1, α2, with one undirected edge:

Let α1, α2 be vertices representing the two elements in the base of G2. We see that they form an angle

of 150◦, and so the Dynkin diagram is

Connected Dynkin diagrams can all be classified as one of 8 pictures: An, Bn, Cn, Dn, G2, F4, E6, E7, E8.
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3 Classification of Lie Algebras

Definition. A Lie Algebra is a vector space g over a field with a Lie bracket, which satisfies the following:

• [ax+ by, z] = a[x, z] + b[y, z]

• [z, ax+ by] = a[z, x] + b[z, y]

• Jacobi Identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0∀x, y, z ∈ g

A Lie algebra is semisimple if it is a direct sum of non-abelian Lie algebras with no non-zero proper ideals

(simple Lie algebras).

Definition: A Cartan Subalgebra h ⊆ g is an abelian, diagonalizable subalgebra which is maximal under

set inclusion, with dimension equal to the rank of g.

Cartan subalgebras always exist for finite dimensional complex Lie algebras, and are all conjugate to each

other under automorphisms of the Lie algebra, meaning that they all have the same dimension. It is possible

to classify semisimple Lie algebras defined over a algebraically closed field of characteristic zero by finding

the root systems associated with their Cartan Subalgebras, which as we have discussed above, are classified

according to their Dynkin diagrams. Let {H1, .....,H2} be a basis for h. Extending this basis to a basis

of g will yield a basis with very nice commutator relations, since any Cartan subalgebra is abelian and so

[Hi, Hj ] = 0 .

Definition: The adoint operator of x for x ∈ g, denoted adx : g → g takes x 7→ [x, y].

The adoint operators determine the linear mapping ad : g → gl(g), the Lie algebra of all linear endomor-

phisms of g. Since we consider only finite dimensional Lie Algebras, gl(g) is the Lie algebra of square matrices

under matrix multiplication. We see that ad is a representation of g called the adoint representation.

We will now note some nice facts about linear operators:

• Pairwise commuting, diagonalizable linear operators share a common set of eigenvectors.

Proof. Since we are working with matrices, we shall do a nice matrix proof. Note that if Ax = λx.
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Then ABx = BAx = Bλx = λBx since we have assumed that A,B are pairwise commuting. Then,

x,Bx are eigenvectors of A,

• For H1, H2 ∈ h, adH1
, adH2

commute and are diagonalizable. By the first fact, they then share a

common set of eigenvectors.

Proof. First, we show that they commute; by the Jacobi identity, we have that

[H1, [H2, X]] = −[H2, [X,H1]]− [X, [H1, H2]] = −[H2, [X,H1]]− [X, 0] = [H2, [H1, X]]

Recall from linear algebra that if two linear transformations have the same eigenvectors, then they can

be simultaneously diagonalized. Therefore, we have the desired result.

By the spectral theorem, we can decompose g into shared eigenspaces gα of the adoint operators:

g = h⊕
⊕
α∈Φ

gα where the α′s are the eigenvalues of adHi
on the eigenspace gα

Therefore, for each eigenvector E ∈ gα, [Hi, E] = αiE. Each such αi is called a root of g. Let Φ denote

the set of roots. Φ forms a root system in Rr, where r is the rank of g. In particular, each eigenspace gα

for α ∈ Φ is one-dimensional. We can now direct our attention to proving the two theorems stated in the

beginning.

3.1 The Nice Stuff

Serre’s Theorem: Given a root system Φ in a Euclidean space with inner product (, ), ⟨β, α⟩ defined as

before and base {α1, α2, ...αn}, the Lie algebra g defined by 3n generators ei, fi, hi and the relations

[hi, hj ] = 0

[ei, fi] = hi, [ei, fj ] = 0, i ̸= j

[hi, ej ] = ⟨αi, αj⟩ ej , [hi, fj ] = −⟨αi, αj⟩ fj

ad(ei)
−⟨αi,αj⟩+1(ej) = 0, i ̸= j

ad(fi)
−⟨αi,αj⟩+1(fj) = 0, i ̸= j
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is a finite-dimensional semisimple Lie algebra with the Cartan subalgebra generated by the h′
is and with

the root system Φ.

Sketch: L0 = L̄/K̄ where K̄ is the ideal in L̄ where L̄ is a free Lie algebra generated on 3n elements

by the following generators: {ei, fi, hi|1 ≤ i ≤ l}. Let K̄ be generated by [hi, hj ], [ei, fi] − δijhi, [hi, ei] −

cji, [hi, fi] + cjifi where cij is the Cartan integer ⟨αi, αj⟩. Let L0 be decomposed into E + F +H where E

is generated by the ei and F is generated by the fi.

Now, let L = L0/K where K is the ideal generated by all eij , fij i ̸= j.

We will first consider elements of L0. Let I be the ideal of E generated by all the eij and J be the ideal

of F generated by the fij . Note that this means that K includes I and J . We shall proceed from here in

steps, to avoid any further confusion than that caused by these definitions.

1. I and J are ideals of L0. The argument for I and J will be roughly the same, so we consider

only J . First, we see that yij is an eigenvector for ad hk (this is discussed above) with eigenvalue

−cjk + (cji − 1)cik. Since ad hk(F ) ⊂ F , we have that ad hk(J) ⊂ J by the Jacobi identity. However,

it is also the case that ad ek(fij) = 0. Then, ek maps F into F +H, and so since ad hk(J) ⊂ J , we

have that ad ek(J) ⊂ J again by the Jacobi identity. Then we have also ad L0(J) ⊂ J .

2. K = I + J . Recall that I + J ⊂ K. But by 1), we have that I + J is an ideal of L0 which contains all

eij , fij , and K is the smallest such ideal. Therefore, we have that I + J = K.

3. Let N− = E/F , N = E/I. Then, L = N− + H + N where + denotes the direct sum of

subspaces. Let H be identified with its image under the canonical map L0 → L. This follows fairly

directly from 2) and the direct sum decomposition L0 = E + F +H.

4. E ⊕ F ⊕ H is isomorphic to L. We won’t thoroughly prove this, but it follows loosely from the

relations detailed above, since we have already shown that H maps isomorphically into L by 3). As a

consequence, we can identify ei, fi, hi with elements of L, and in fact these generate L.

5. If λ ∈ H∗, then Lλ = {x ∈ L|[hx] = λ(h)(x) ∀h ∈ H}. Then, H = L0 and N =
∑

λ>0 Lλ,

N− =
∑

λ<0 Lλ, and each Lλ is finite dimensional. This remark follows from 3) and 4).

6. For 1 ≤ i ≤ n, we have that ad ei and ad fi are locally nilpotent endomorphisms of L.

Again, we have that the arguments for the ei is roughly the same as the argument for the fi, so we
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consider only the ei. Let M be the subspace of all elements of L that are killed by some power of adei.

If e ∈ M is killed by (adei)
r, and f ∈ M is killed by (adei)

r, then [e, f ] is killed by (adei)
r+s. Then

M is a subalgebra of L, but all ek ∈ M and all fk ∈ M , and these elements generated L, so M = L.

7. Let τi = exp(adei) exp(ad(−fi)) exp(adei) for 1 ≤ i ≤ n. Then, τi is a well defined automor-

phism of L. We also won’t prove this fact rigorously, but it follows from 6).

8. If λ, µ ∈ H∗, and σλ = µ for σ in the Weyl group of Φ, then dimLλ = dimLµ. It suffices to

consider only the generators of the Weyl group. The automorphism τi of L from 7) coincides on the

finite dimensional space Lλ + Lµ, and we see that τi interchanges Lλ and Lµ. In particular, we see

that dimLλ = dimLµ.

9. For 1 ≤ i ≤ n, dimLα = 1, while Lkαi
= 0 for k ̸= −1, 0, 1. It follows from 4) that this holds for

L0, and consequently must hold for L.

10. If α ∈ Φ, then dimLα = 1 and Lkα = 0 for k ̸= −1, 0, 1. Recall that each root is conjugate to a

simple root under the action of the Weyl group. Therefore, this follows 8), 9).

11. If Lλ ̸= 0, then either λ ∈ Φ or λ = 0. If this were not the case, then λ would be an integral

combination of simple roots with coefficients that were either all positive or all negative. We see that

by 10), λ is not a multiple of a root. Let σλ be a conjugate of λ under the Weyl group action. By

various properties of this action, we see that Lσλ = 0, which contradicts 8).

12. dimL = n + |Φ| < ∞. Since by 5 we see that each Lλ is finite dimensional, this follows by 10) and

11).

13. L is semisimple. Let A be an abelian ideal of L. We show that A = 0. Note that ad H stabilizes

A, and so A = A ∩ H +
∑

α∈Φ(A ∩ Lα) since L = H +
∑

α∈Φ Lα. If Lα ∈ A, then [L−α, Lα] ⊂ A

where L−α ⊂ A and sl2(F ) ⊂ A where L is an algebra over F . This cannot be the case, and so

A = A ∩H ⊂ H where [Lα, A] = 0 for α ∈ Φ and A ⊂
⋂

α∈Φ kerα = 0.

14. H is a Cartan subalgebra of L and Φ is the root system. H is abelian, and therefore nilpotent

and, due to the direct sum decomposition self-normalizing. This is precisely the definition of a Cartan

subalgebra, and it is immediete that Φ is the corresponding set of roots.

This theorem implies existence. Let us restate the uniqueness theorem as follows:

Let L,L′ be semisimple Lie algebras, with respective Cartan sub-algebras H,H ′ and root system Φ,Φ′. let
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an isomorphism Φ → Φ′ be given, sending a given base ∆ to a base ∆′, and inducing the isomorphism

π : H → H. For each α ∈ ∆ (respectively (α′ ∈ ∆′)), select an arbitrary nonzero xα ∈ Lα (respectively

(x′
α ∈ L′

α)). Then, there exists a unique isomorphism π : L → L′ extending π : H → H ′ and sending xα to

xα′ for α ∈ ∆.

Proof. It suffices to show the case where L is the lie algebra constructed according to Serre’s theorem.

Take eα, fα and hα = [eα, fα] to be the specified generators with α ∈ ∆. Set h′
α = π(hα) and choose

f ′
α′ uniquely satisfying [x′

α, y
′
α] = h′

α′ for each α′ ∈ ∆′. Since Φ ∼= Φ/, the chosen elements in L′ satisfy

the relations in Serre’s theorem. Therefore, Serre’s theorem provides a unique homomorphism π : L → L′

sending eα, fα, hα(α ∈ ∆) to e′α, f
′
α, h

′
α respectively, extending the given isomorphism π : H → H ′. Since

dimL = dimH + |Φ| = dimH ′ + |Φ′| = dimL′, we see that π is indeed an isomorphism.

3.2 Examples

Consider the special linear Lie algebra sln(C), and let h be the subalgebra of diagonal matrices with trace 0.

Then, the root vectors are matrices Ei,j where i ̸= j, with a 1 in i, j spot and zeroes everywhere else. Then,

[H,Ei,j ] = (λi −λj)Ei,j where H is the diagonal matrix with entries λ1, ...., λn. Therefore, we can represent

the roots as the linear functionals αi,j(H) = λi − λj . However, we can identify h with its dual h∗, and so we

can rewrite the roots as the vectors αi,j = ei − ej in the subspace of Rn consisting of n-tuples that sum to

0. This can be identified as the An−1 root system. For example, we see that the associated root system of

sl2(C) is {e1 − e2, e2 − e1} which is the A1 root system.
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