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Abstract

WARNING: These notes are apt to contain errors; if you find any, please email me at
skyler@bu.edu.

NOTE: These notes are designed for a general audience, but include remarks directed
towards those with a background in algebraic geometry.

1 Back to Highschool: Plane Conics

1.1 Preliminaries

We’ll be working primarily with polynomials in two variables with complex coordinates:

Definition 1.1. The ring of polynomials in two variables, denoted C[x, y] is the set
of all polynomials in two indeterminates together with the standard operations.

Remark 1.1. As far as I know, much of what follows generalizes to k[x, y] where k = k̄,
although some things may fail in e.g. characteristic 2. No guarantees on any of these
notes, but even less if you’re working in positive characteristic.

Example 1.1. The polynomials x2y + 1, x2 + y, y2 + x2, and x2 + x are all elements of
C[x, y]. Recall that:

(x2 + y) + (y2 + x2) = 2x2 + y2 + y

(x2 + y)(y2 + x2) = x2y2 + x4 + y3 + x2y

Definition 1.2. Polynomials with no power higher than 1, like x− 1 and y− 2, are called
linear.

This notion motivates the following definition:

Definition 1.3. The degree of a single term is the sum of the powers in that term. The
degree of a polynomial is the highest degree of any monic term.

Definition 1.4. An ideal in the ring of polynomials is a subset of the set C[x, y] which
is closed under addition and multiplication by any element in C[x, y].
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Definition 1.5. A morphism of rings or ring homomorphism is a function f be-
tween two rings satisfying f(a+b) = f(a)+f(b) and f(ab) = f(a)f(b). An isomorphism
of rings is an invertible morphism.

Definition 1.6. We’ll call the set of all pairs (z1, z2) for z1, z2 ∈ C the affine plane
over C and denote it A2.

Lemma 1.1. Pick some subset S of affine space. The set I(S) of all polynomials which
vanish at S is an ideal.

Proof. Exercise.

Definition 1.7. We define the vanishing set of a polynomial f(x, y), denoted V (f), to
be the set where the polynomial is zero:

V (f) = {(x, y) ∈ A2|f(x, y) = 0}

We broadly wish to study, in this section, the vanishing set of polynomials of degree
two; well call these conics:

Definition 1.8. A conic is the zero set of a polynomial of degree 2.

Question 1.1. We can state our main goals for this section formally as follows:

1. What can the set V (f) “look like” for f a degree 2 polynomial?

2. What does the set V (f) ∩ V (g) “look like” for f, g degree two polynomials? In
particular, how many points does this set contain?

3. What are the elements of I({p1, ..., pn}) for pi = (xi, yi) a point in A2, and for all
n ∈ N? (how many quadratics pass through n points).

The final thing that will allow us to answer these questions is a notion of isomorphism
between vanishing sets of polynomials; that is, a way of determining when two vanishing
sets are “essentially the same”. This will allow us to formalize and answer Question 1.1,
points 1 and 2. In order to do this, we need a little more algebra:

Definition 1.9. Let R be a ring (in particular, the ring C[x, y] of polynomials), and let I
be an ideal. The quotient R/I is then the set of cosets of the form f + I for an element
f .

Lemma 1.2. The quotient R/I is a ring under the operations (p+I)+(q+I) = (p+q)+I
and (p+ I)(q + I) = (pq) + I.

Proof. C.F. [DF]

Remark 1.2. One can consider the quotient by the ideal generated by an element f to
be “evaluation at f = 0”, or the quotient by an ideal to be the identification of everything
in that ideal with zero. Indeed, we see this information captured formally in:

Theorem 1.1 (The First Isomorphism Theorem). Let f :R→ S be a morphism of rings;
that is, a map satisfying f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b). Then ker(f) =
{x ∈ R|f(x) = 0} is an ideal, and Im(f) ∼= R/ ker(f). In particular, if f is surjective,
S ∼= R/ ker(f). (Here ∼= denotes isomorphism).

Proof. C.F. [DF]

2



Definition 1.10. We define the affine coordinate ring of a subset S of A2 to be
k[x, y]/I(S). We say that two subsets of A2 “look the same” if their affine coordinate
rings are isomorphic.

Definition 1.11. A algebraic set is the zero set of a polynomial in affine space. Thus
the above definition associates to each algebraic set it’s affine coordinate ring.

This association is important:

Lemma 1.3. There is an inclusion-reversing bijection between the zero sets of polynomials
intersecting with an algebraic set and ideals in the affine coordinate ring of that algebraic
set. In particular, the points of an algebraic set are in bijective correspondence with the
maximal ideals of the coordinate ring.

Theorem 1.2. Suppose ϕ = ly2 + axy + bx2 + cx+ dy + e defines a conic Z(ϕ). Then if
4b− a2 = 0, A(Z(ϕ)) ∼= C[x, y]/(y2 − x); otherwise, A(Z(ϕ)) ∼= C[x, y]/(xy − 1).

Proof. First consider the case where l = b = 0. Then ϕ = axy + cx + dy + e. Then
add and subtract cd

a (a ̸= 0, as otherwise Z(ϕ) would be a degenerate conic) to obtain

ϕ = axy + cx+ dy + cd
a − cd

a + e. Factor to obtain ϕ = (ax+ d)(y + c
a)−

cd
a + e. Consider

the transformation ψ:Z(ϕ) → Z(xy+ ẽ) by the rule (x, y) 7→
(
x−d
a , y − c

a

)
. Clearly this is

a polynomial function with a polynomial inverse, and thus a regular isomorphism. Thus

Z(ϕ) ∼= Z(xy + ẽ)

Moreover, another transformation f :Z(xy + ẽ) → Z(ẽxy + ẽ) can be constructed, by the
rule (x, y) 7→ (ẽx, y) (which is well defined as k = k̄). Thus, as multiplication by a scalar
does not change the zeros of a polynomial, Z(ϕ) ∼= Z(xy + 1).

However, if l or b is nonzero, (suppose l without loss of generality) then we can divide
to obtain a monic polynomial for new coefficients a, b, ...

y2 + ayx+ bx2 + dy + cx+ e

Add and subtract (ax)2

4 :

y2 + ayx+
(ax)2

4
− (ax)2

4
+ bx2 + dy + cx+ e

Factor

(y +
ax

2
)2 − (ax)2

4
+ bx2 + dy + cx+ e

Use the transformation (x, y) 7→
(
x, y − ax

2

)
. Note this is an isomorphism with inverse

(x, y) 7→ (x, y + ax
2 ) and image

Z

(
y2 − (ax)2

4
+ bx2 + d

(
y − ax

2

)
+ cx+ e

)
Which simplifies to

Z(y2 + b′x2 + c′x+ d′y + e′)

If b′ = 0, then if c′ = 0 the polynomial is a quadratic in y and splits, so c′ or b′ are nonzero.
First suppose c′ is nonzero:

= Z(y2 + c′x+ d′y + e′)
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Add and subtract d′2

4 and factor to obtain

= Z((y +
d′

2
)2 − d′2

4
+ c′x+ e′)

Then another affine transformation (x, y) 7→
(
y − d′

2 ,
−x+ d′2

4
−e′

c′

)
yields the intended result

∼= Z(y2 − x)

Suppose, then, that b′ ̸= 0.

Z(y2 + b′x2 + c′x+ d′y + e′)

Then add and subtract
(

c′

2b′

)2
and factor:

Z

(
y2 +

(√
b′x+

c′

2b′

)2

−
(
c′

2b′

)2

+ d′y + e′

)

Another coordinate transform and re-labling coefficients gives

∼= Z
(
y2 + x2 + d′y + ẽ

)
Complete the square and transform again to obtain

∼= Z
(
y2 + x2 + ρ

)
∼= Z ((x+ iy)(x− iy) + ρ)

. Transform (x, y) 7→ (x+ iy, y)

∼= Z ((x+ 2iy)(x) + ρ)

Transform (x, y) 7→ (x, −i
2 (y − x)).

∼= Z (xy + ρ)

Transform (x, y) 7→ (ρx, y), and note that scalar multiplication does not change the zeros
of a polynomial:

∼= Z (xy + 1)

This solves Question 1.1, part 1. We leverage a similar philosophy to deal with the
second problem, but first we require the following lemmas:

Lemma 1.4. If Ti for each natural i are subsets of C[x, y], then:

V (T1) ∪ V (T2) = V (T1T2)

Where T1T2 is the ideal generated by all products of elements in T1 and T2, and

⋂
i

V (Ti) = V

(⋃
i

Ti

)
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Remark 1.3. Those who are familiar with the topic will recognize that the above are the
closure conditions necessary to specify the closed sets of a topology; indeed, the topology
who’s closed sets are the vanishing sets of polynomials is called the Zariski topology, and
is the (main) topology used in algebraic geometry.

Lemma 1.5.
C[x, y]/(f, g) ∼= (C[x, y]/(f)) /(g)

Proof. Consider the map ψ:C[x, y] → (C[x, y]/(f)) /(g) by the rule a 7→ (a + (f)) + (g).
Clearly this is surjective; any element in (C[x, y]/(f)) /(g) is of the form (a + (f)) + (g).
Moreover, the kernel of this map is exactly (f, g); a ∈ (f, g) if and only if a = xf + yg;1 f
is killed by the first quotient and g is killed by the second, so a maps to zero if and only
if it is of this form. Then we are done by Theorem 1.1.

Theorem 1.3. Let f and g be degree 2 polynomials in C[x, y] with no common factor.2

Then V (f) ∩ V (g) contains at most four points.

Proof. By lemma 1.4, we study S = V ((f) ∪ (g)) where f, g are polynomials of degree 2
with no common factor. This will be the same as V ((f, g)); consider the affine coordinate
ring C[x, y]/(f, g). By Lemma 1.5, this is (C[x, y]/(f)) /(g). We know that C[x, y]/(f)
is isomorphic to either C[x, y]/(xy + 1) or C[x, y]/(y2 + x). Consider first the second
case. Note that in this quotient we can replace each instance of x with one of y2, thereby
obtaining a polynomial in y; because there is a unique way to do this, we obtain unique
representatives for each element in the quotient. Every polynomial in y can be obtained
this way, yielding a well-defined homomorphism to C[y]. We consider the image of g under
the map “substitute y2 for x” - this will be, in general, a degree 4 or lower polynomial (as
g may have an x2 term, which maps to y4) in one variable over C; as C is algebraically
closed, this polynomial has at most four roots and splits into at most 4 linear factors.
Then these linear factors are the maximal ideals which contain the image of (g), and thus
correspond bijectively to the maximal ideals in our final quotient C[x, y]/(f, g), and thus
to the points in the associated affine variety.

We now consider the second case; we can view the quotient C[x, y]/(xy+1) as C[x, x−1]
under the map y 7→ −x−1. Then we note that g maps to a polynomial of the form
P = ax2 + bx−2 + cx+ dx−1 + e. But now that x is invertible, the ideal generated by this
polynomial is the same as the ideal generated by x2P ; this is because we can multiply x2P
by x−2 to get P , and vice versa, so any ideal which contains one must contain the other.
But x2P is a quadratic in x, and thus splits into at most 4 linear factors; a symmetric
argument to the first case then shows that there are at most 4 points in the algebraic set
associated to the coordinate ring.

Example 1.2. The polynomials x2

3 + y2

1 − 1 and x2

1 + y2

3 − 1 intersect in four points.

Example 1.3. The polynomials yx− 1 and xy − 2 do not intersect:

xy − 2 = xy − 1

2 = 1

1This fact is due to the fact that the ideal generated by a set A is equal to RA; see [DF], page 251.
2For more information on why this condition makes sense, look into the theory of Unique Factorization

Domains - a broad class of rings, of which C[x, y] is an element.
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Remark 1.4. This result is somewhat unsatisfying as it doesn’t really tell us how many
intersections any given pair of polynomials have. We can remedy this (somewhat) by some
constructions which we’ll see later, and will allow us to “fix” cases like the above so that
the answer to our question “how many times do two conics intersect” is a decisive “four”.

Now we address the final aspect of our question; namely, how many conics (and which)
pass through n points. We begin with n = 1:

Theorem 1.4. There are infiniely many degree 2 polynomials passing through a point.

Proof. Let P be a point in the affine plane. We can represent this point as P = V ((x −
a, y−b)) for P = (a, b); the set of points where the functions x−a and y−b both vanish is
exactly P (recall also our correspondence between points and maximal ideals - this ideal
is maximal). We wish to find degree two polynomials in the maximal ideal (x− a, y − b);
but all such polynomials are of the form f(x − a) + g(y − b) where f and g are degree
≤ 1, and we have found all (infinitely many) degree two polynomials through the given
point.

Definition 1.12. Affine n-space over the complex (or real) numbers is the set of all
n-tuples (x1, ..., xn), for xi in the complex (or real) numbers.

Definition 1.13. Projective n-space is the set of lines through the origin in affine n+1
space. We can view this as all points which are a scalar multiple of a nonzero point in
affine n+1 space; we denote this [x0:x1: ...:xn] where not all xi are zero (note the colons,
square brackets, and zero indexing). This refers to the set of points {(λx0, ..., λxn)|λ ∈ C}.

Remark 1.5. The numbering conventions exist for dimensional reasons that we won’t
touch on in this talk. Effectively, around any point, projective n space “looks like” affine
n space.

Definition 1.14 (Loose Definition). A moduli space is a “space3” in which each point
corresponds to a object which you wish to study, and for which nearby points usually
correspond to similar objects.

Example 1.4. Consider the set of all lines in R2. A (non-vertical) line is given uniquely
by the equation

y = mx+ b

meaning that we can parametrize all non-vertical lines by R2, where a point (m, b) in R2

corresponds to the line with the above equation. If we want to consider vertical lines, a
line can be given by a line through the origin which is “slid” somewhere else; we have a
good representation of the set of all lines through the origin in 2-space, we can consider
the space RP × R - the set of pairs (m, b) where m is a point in projective 1-space (aka
a set of the form [x1:x2]) and b is the y-intercept of the line we want. We can’t really
rigorously discuss the notion of nearby points yielding similar lines, but intuitively, the
idea is there - varying x1, x2, or b only slightly gives a line which isn’t much different.

Theorem 1.5. The moduli space of complex conics is P5. Moreover, 5 points determine
a conic; more general points will not lie in a single conic, and less will lie in infinitely
many.

3A topological space usually, often with some extra structure - but we won’t go into the details of
topology.
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Proof. Consider a general conic P = ax2 + bxy + cy2 + dx + ey + f . The scaling λP by
any complex number λ yields a polynomial with the same roots, so we identify P with
λP . Identifying the conic with the tuple of it’s coordinates then gives a moduli space; the
space of conics is P5. Suppose we require P (x1, y1) = 0. Then

ax21 + bx1y1 + cy21 + dx1 + ey1 + f = 0

This defines a hyperplane through the origin in affine 6-space; indeed, each point we
require the zero set of P to contain defines another hyperplane through the origin. Then,
if we require the zero set of P contain all n distinct points, the coefficients must be in
the intersection of n hyperplanes through the origin. Assuming no two points define the
same hyperplane (which is true in general - changing the point slightly means it will
define a different hyperplane), some linear algebra gives that the intersection of n distinct
hyperplanes in affine 6-space is 6−n dimensional. In particular, if n = 5, then we are left
with a line; when we consider the space of all lines in this space, it is a single point. Thus
we have recovered the classical result that 5 points determine a conic. If n < 5, we have
an infinite number of lines in our space; if n > 5, we have none.

Example 1.5. Find the conic polynomial which passes through the points (0, 0), (0, 1),
(1, 2), (−1, 0) and (0,−1).

Proof. Begin with (0, 0). This imposes the condition f = 0. Next we consider the point
(0, 1). This imposes the condition:

c+ e+ f = 0

The point (1, 1) imposes the condition:

a+ 2b+ 4c+ d+ 2e+ f = 0

The point (−1, 0) imposes the condition:

a− d+ f = 0

The point (0,−1) imposes the condition:

c− e+ f = 0

Some linear algebra yields: 
0 0 0 0 0 1 0
0 0 1 0 1 1 0
1 2 4 1 2 1 0
1 −1 0 0 0 1 0
0 0 1 0 −1 1 0


Row reducing: 

1 0 0 1
3 0 0 0

0 1 0 1
3 0 0 0

0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


We obtain our answer in terms of a free variable, d. That is, our solution is c = e = f = 0
3d = a = b. Identifying all scalar multiples allows us to assume d = 1, so we can write our
polynomial:

P = 3x2 + 3xy + x

This is then the (unique) degree 2 polynomial which is zero at each of these points!

Exercise 1.1. Check that the above polynomial is indeed zero at each of these points.
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Act 2: Cubics

Act 3: “Modern” Geometry
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